Skip to main content

New Drug Approvals 2014 - Pt. XI - Idelalisib (Zydelig™)




ATC Code: L01XX47
Wikipedia: Idelalisib
ChEMBL: CHEMBL2216870

On July 23rd the FDA approved Zydelig (idelalisib, GS-1101), as an orally-delivered drug to treat patients with three types of blood cancers.
Relapsed chronic lymphocytic leukemia (CLL)
Relapsed follicular B-cell, non-Hodgkin lymphoma  (FL)
Relapsed small lymphocytic lymphoma (SLL)

Blood cancer
The three main categories of blood cancer are leukemia, lymphoma and myeloma. Lymphoma is also split into two types: Hodgkin lymphoma and non-Hodgkin lymphoma. Both leukemia and myeloma occur in the bone marrow, whilst lymphoma is a cancer that is isolated to the lymphatic system. Acute leukemia is where there is an abundance of underdeveloped white blood cells that can’t function properly and chronic leukemia is where there are just far too many white blood cells, which is just as bad as having too few. Myeloma is where the plasma cells form tumours in the bone marrow.


Idelalisib
This drug is a phosphoinositide 3-kinase inhibitor, which works by blocking P110σ (CHEMBL3130, Uniprot:O00329), the delta isoform of the phosphoinositide 3-kinase enzyme, encoded in humans by the PIK3CD gene. This isoform plays a role in B-cell development, proliferation and function and is expressed predominantly in leukocytes.

Mode of action
Idelalisib works on patients by inhibiting the PI3 kinase delta isoform (PI3Kδ), which plays an important role in malignant lymphocyte survival. It is the delta and gamma forms that are specific to the hematopoietic system. This treatment impairs the normal tracking of CLL lymph nodes. It can be used in conjunction with Rituxan (rituximab), an existing blood cancer treatment, for relapsed CLL and on its own for FL and SLL.

Clinical trials
Clinical trials were carried out on 220 patients, with relapsed CLL, who were not healthy enough, due to co-existing medical conditions or damage from previous chemotherapy, to receive cytotoxic therapy. Patients were administered either idelalisib plus rituximab or a placebo and rituximab. Most of these patients were 65 years of age or older.
After 24 weeks, 93% of the group who had taken the combination treatment were disease progression-free, compared to only 46% of the group who had received the placebo and rituximab combination.
After 12 months, 90% of the dual drug combination group were alive, compared to 80% of the placebo-containing group. [NCI]

Indication and Warnings
This drug can be used in combination with rituximab or on its own, indicated for patients with relapsed conditions. There are several warnings for idelalisib, including hepatotoxicity, pneumonitis (fatal and serious), intestinal perforation and embyro-fetal toxicity. [FDA]

Trade Names
Idelalisib was developed by Gildead Sciences and is marketed under the name Zydelig.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d