Skip to main content

New Drug Approvals 2011 - Pt. XXIX (ruxolitinib phosphate) (Jakafi ™)








ATC Code: L01XE18
Wikipedia:Ruxolitinib

On November 16th 2011, the FDA approved ruxolitinib phosphate (Tradename:Jakafi™ Research Code: INCB-018424), a JAK1/JAK2 inhibitor for the treatment of patients with intermediate or high-risk myelofibrosis, including primary myelofibrosis, post-polycythemia vera myelofibrosis and post-essential thrombocythemia myelofibrosis.

Myelofibrosis is a disorder of the bone marrow, in which the marrow is replaced by scar (fibrous) tissue. Scarring of the bone marrow reduces its ability to blood cells, and can lead to anemia, bleeding problems, and a higher risk of infections due to reduced white blood cells. It is also associated with engorgement of organs suchs as the spleen and liver. Primary myelofibrosis may develop to secondary myelofibrosis - including leukemia and lymphoma. Myelofibrosis is associated with dysregulated Janus kinases JAK1 and JAK2, and some with a somatic mutation in JAK2 (JAK2V617F) (OMIM). JAK signaling involves recruitment of STATs (signal transducers and activators of transcription) to cytokine receptors, activation and subsequent localization of STATs to the nucleus leading to modulation of gene expression. Oral administration of ruxolitinib prevented splenomegaly, preferentially decreased JAK2V617F mutant cells in the spleen and decreased circulating inflammatory cytokines.

JAK1 (Uniprot:P23458) and JAK2 (Uniprot:O60674) are tyrosine protein kinases and members of the Janus kinase subfamily, where all members of the family contain two tandem protein kinase domains (PFAM:PF00069), one of which is catalytically active and one believed to be inactive. JAK1 and JAK2 are 43% identical by sequence and both have the 3D structure of their kinase domain determined (see e.g. PDBe:3EYH and PDBe:3Q32 for JAK1 and JAK2 respectively). Ruxolitinib is the first approved targeted JAK inhibitor, with several others in mid to late-stage clinical development (including CYT-387, GLPG-0634, INCB-28050, ONX-0803, NS-018, pacritinib (SB-1518), AZD-1480, BMS-911543, LS-104, XL-019, TG-101348, tofacitinib (CP-690550), VX-509, R-348, WHI-P131 and oclacitinib (PF-03394197) (veterinary applications)) - note these show a broad range of selectivity against the three known JAK subtypes.
Ruxolitinib (IUPAC: (R)-3-(4-(7H-pyrrolo[2,3­ d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile phosphate; (Standard InCHI key: HFNKQEVNSGCOJV-OAHLLOKOSA-N) has a molecular weight of 404.36, an AlogP of 2.88 and complies with all components of Lipinski's rule of 5.

Ruxolitinib is administered orally as the phosphate salt as tablets and dosed according to platelet count (hence the large range of dosage forms). Each tablet contains ruxolitinib phosphate equivalent to 5 mg, 10 mg, 15 mg, 20 mg and 25 mg of ruxolitinib free base. The Tmax for Ruxolitinib is 1-2 hours post dosing, with exposure (Cmax and AUC) linear over a dose range of 5mg to 200mg. Oral absorption is in excess of 95%. The volume of distribution is 53-65 L, with plasma protein binding in excess of 97%. Ruxolitinib is predominantly metabolized by CYP3A4, with the two primary metabolites displaying weaker, but still significant pharmacological activity against their specific targets. Administration of ruxolitinib with ketoconazole, a potent CYP3A4 inhibitor, prolongs the half life of ruxolitinib from 3.7 to 6.0 hours, increases the Cmax to 33% and the AUC to 91%. The change in the pharmacodynamic marker, pSTAT3 inhibition, was consistent with the corresponding ruxolitinib AUC following concurrent administration with ketoconazole.

The license holder for Jakafi is Incyte, and the full prescribing information can be found here.

Comments

Unknown said…
Thanks for the post it prompted me to do some ChemSpider curation and deposition. However, as I looked at the post and the data, there is some confusion about Ruxolitinib and Jakafi. While they are related they are not exactly the same, but in the post this is not always clear.

Ruxolitinib:
http://www.chemspider.com/Chemical-Structure.24750936.html

Jafaki:
http://www.chemspider.com/Chemical-Structure.26286919.html
Unknown said…
Actually, as soon as I posted that last comment I realised that there is another serious error in the post, and as a result in the ChemSpider links that I posted. The image that is in the post is the correct enantiomer (R), however the ChEMBL article and standard InChIkey are for the S-enantiomer.

The correct ChemSpider links are,

Ruxolitinib:
http://www.chemspider.com/Chemical-Structure.25027389.html

Jakafi:
http://www.chemspider.com/Chemical-Structure.26286920.html
jpo said…
Hi, Thanks Dave. You are right.

The post failed to discriminate between the dosed salt (ruxolitinib phosphate) and the active compound form (ruxolitinib). I've reworded this.

More interesting though is that the original ChEMBL structure came from the paperhttp://www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271398&_user=776054&_pii=S0960894X10014770&_check=y&_origin=&_coverDate=15-Dec-2010&view=c&wchp=dGLbVlt-zSkzk&md5=f0b47b7a41bbbfcea9c233b718ea7531/1-s2.0-S0960894X10014770-main.pdf and the structure is correct as drawn in the primary literature, since this is the only version currently in ChEMBL, the wrong enantiomer was tagged. So it is an example of an error in the literature being propagated. It's quite interesting, that the paper itself is about a different series, and the Incyte compound is listed as prior art, and we know from some error benchmarking in ChEMBL, that chemists drawing someone else's compound is a common source of errors.

So we'll fix this, and many thanks. Community curation at it's best!

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

LSH-based similarity search in MongoDB is faster than postgres cartridge.

TL;DR: In his excellent blog post , Matt Swain described the implementation of compound similarity searches in MongoDB . Unfortunately, Matt's approach had suboptimal ( polynomial ) time complexity with respect to decreasing similarity thresholds, which renders unsuitable for production environments. In this article, we improve on the method by enhancing it with Locality Sensitive Hashing algorithm, which significantly reduces query time and outperforms RDKit PostgreSQL cartridge . myChEMBL 21 - NoSQL edition    Given that NoSQL technologies applied to computational chemistry and cheminformatics are gaining traction and popularity, we decided to include a taster in future myChEMBL releases. Two especially appealing technologies are Neo4j and MongoDB . The former is a graph database and the latter is a BSON document storage. We would like to provide IPython notebook -based tutorials explaining how to use this software to deal with common cheminformatics p

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra

ChEMBL 26 Released

We are pleased to announce the release of ChEMBL_26 This version of the database, prepared on 10/01/2020 contains: 2,425,876 compound records 1,950,765 compounds (of which 1,940,733 have mol files) 15,996,368 activities 1,221,311 assays 13,377 targets 76,076 documents You can query the ChEMBL 26 data online via the ChEMBL Interface and you can also download the data from the ChEMBL FTP site . Please see ChEMBL_26 release notes for full details of all changes in this release. Changes since the last release: * Deposited Data Sets: CO-ADD antimicrobial screening data: Two new data sets have been included from the Community for Open Access Drug Discovery (CO-ADD). These data sets are screening of the NIH NCI Natural Product Set III in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296183, DOI = 10.6019/CHEMBL4296183) and screening of the NIH NCI Diversity Set V in the CO-ADD assays (src_id = 40, Document ChEMBL_ID = CHEMBL4296182, DOI = 10.601